Singular perturbation approach to trajectory tracking of flexible robot with joint elasticity

نویسندگان

  • B. Subudhi
  • Alan S. Morris
چکیده

The control problem of a robot manipulator with flexures both in the links and joints was investigated using the singular perturbation technique. Owing to the combined effects of the link and joint flexibilities, the dynamics of this type of manipulator become more complex and under-actuated leading to a challenging control task. The singular perturbation being a successful technique for solving control problems with under-actuation was exploited to obtain simpler subsystems with two-time-scale separation, thus enabling easier design of subcontrollers. Furthermore, simultaneous tracking and suppression of vibration of the link and joint of the manipulator is possible by application of the composite controller, i.e. the superposition of both subcontrol actions. In the first instance, the design of a composite controller was based on a computed torque control for slow dynamics and linear-quadratic fast control. Later, to obtain an improved control performance under model uncertainty, the composite control action was achieved using the radial basis function neural network for the slow control and a linear-quadratic fast control. It was confirmed through numerical simulations that the proposed singular perturbation controllers suppress the joint and link vibrations of the manipulator satisfactorily while a perfect trajectory tracking was achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Robust Adaptive Trajectory Tracking in Robot Manipulators

In this paper, a novel adaptive sliding mode control for rigid robot manipulators is proposed. In the proposed system, since there may exist explicit unknown parameters and perturbations, a Lyapunov based approach is presented to increase system robustness, even in presence of arbitrarily large (but not infinite) discontinuous perturbations. To control and track the robot, a continuous controll...

متن کامل

Non-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator

This paper, proposes a methodology to implement a suitable nonsingular terminal sliding mode controller associated with the output feedback control to achieve a successful trajectory tracking of a non-holonomic wheeled mobile robot in presence of longitudinal and lateral slip accompanied. This implementation offers a relatively faster and high precision tracking performance. We investigate this...

متن کامل

Optimal Trajectory of Flexible Manipulator with Maximum Load Carrying Capacity

In this paper, a new formulation along with numerical solution for the problem of finding a point-to-point trajectory with maximum load carrying capacities for flexible manipulators is proposed. For rigid manipulators, the major limiting factor in determining the Dynamic Load Carrying Capacity (DLCC) is the joint actuator capacity. The flexibility exhibited by light weight robots or by robots o...

متن کامل

Function Approximation Approach for Robust Adaptive Control of Flexible joint Robots

This paper is concerned with the problem of designing a robust adaptive controller for flexible joint robots (FJR). Under the assumption of weak joint elasticity, FJR is firstly modeled and converted into singular perturbation form. The control law consists of a FAT-based adaptive control strategy and a simple correction term. The first term of the controller is used to stability of the slow dy...

متن کامل

Control of Lightweight Manipulators Based on Sliding Mode Technique

This chapter focuses on the dynamic control issues of lightweight robots as well as flexible joint robots. The goal is to increase the bandwidth and the accuracy of the trajectory tracking control. Besides the joint flexibility, the control design considers the dynamics of the electric motor in AC-form i.e. the three phase permanent magnet synchronous motor (PMSM). The final system model is a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Systems Science

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2003